A Jacobi Method for Computing Generalized Hyperbolic SVD

نویسنده

  • Adam W. Bojanczyk
چکیده

In this paper, we introduce a joint hyperbolic-orthogonal decomposition of two matrices which we call a Generalized Hyperbolic SVD, or GHSVD. This decomposition can be used for nding the eigenvalues and eigenvectors of a symmetric indeenite pencil X T X ? Y T Y where = diag(1). We also present an implicit Jacobi-like method for computing this GHSVD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A GPU-based hyperbolic SVD algorithm

A one-sided Jacobi hyperbolic singular value decomposition (HSVD) algorithm, using a massively parallel graphics processing unit (GPU), is developed. The algorithm also serves as the final stage of solving a symmetric indefinite eigenvalue problem. Numerical testing demonstrates the gains in speed and accuracy over sequential and MPI-parallelized variants of similar Jacobi-type HSVD algorithms....

متن کامل

A New Algorithm for the Svd of a Long Product of Matrices and the Stability of Products

Lyapunov exponents can be estimated by accurately computing the singular values of long products of matrices, with perhaps 1000 or more factor matrices. These products have extremely large ratios between the largest and smallest eigenvalues. A variant of Rutishauser’s Cholesky LR algorithm for computing eigenvalues of symmetric matrices is used to obtain a new algorithm for computing the singul...

متن کامل

Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging

Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...

متن کامل

Hyperbolic Behavior of Jacobi Fields Along Billiard Flows

This paper discusses hyperbolic behavior of Jacobi fields along billiard flows on multidimensional Reimannian manifolds. A class of generalized differential operators associated with the impulsive equations (generalized Jacobi equations) are defined using a new Radon measure. We investigate the hyperbolic behavior of functions in the null-space of the operator by applying operator theory.

متن کامل

A Jacobi-Davidson Type SVD Method

We discuss a new method for the iterative computation of a portion of the singular values and vectors of a large sparse matrix. Similar to the Jacobi–Davidson method for the eigenvalue problem, we compute in each step a correction by (approximately) solving a correction equation. We give a few variants of this Jacobi–Davidson SVD (JDSVD) method with their theoretical properties. It is shown tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007